Черный лилипут. Виды звезд. Рентгеновское излучение белых карликов

05.07.2023 Синусит

Каждый из нас порой смотрит в небо, на мириады мерцающих звёзд, и задаётся вопросом «Что же скрывает космос?». Вполне естественно мечтать о том, что находится далеко за пределами нашей досягаемости. Возможно, в какой-то солнечной системе, расположенной далеко от нас, другой вид живых существ смотрит на наше Солнце, которое с их перспективы является лишь маленькой точкой в небе, и гадает, какие же тайны скрываются за ней.

Несмотря на все попытки, мы никогда до конца не поймём все, что скрывает космология, но это не уменьшает нашего желания и стараний познать как можно больше. В этом списке собраны десять увлекательных типов звёзд: некоторые из них уже хорошо известны, а о некоторых учёные только строят гипотезы.

10. Гипергигант

Довольно скучный тип звёзд, по сравнению с остальными звёздами в этом списке, он был включён сюда только из-за его размера. Для нас трудно представить, насколько на самом деле огромны эти монстры, но радиус самой большой звезды, известной науке на сегодняшний день (NML Cygni) в 1 650 раз больше радиуса нашего солнца, и составляет 7,67 астрономических единиц (1 147 415 668,296 километров). Для сравнения, орбита Юпитера находится на расстоянии 5,23 астрономических единиц от нашего солнца, а орбита Сатурна на 9,53 астрономических единиц. Из-за своих огромных размеров, большинство гипергигантов живут в лучшем случае, меньше, чем пару дюжин миллионов лет, перед тем как превратиться в сверхновые. Гипергигант Бетельгейзе (Betelgeuse), который находится в созвездии Ориона, должен превратиться в суперновую в течение следующих нескольких сотен тысяч лет. И когда он это сделает, он будет светить ярче, чем луна, больше года, а также будет виден в течение дня.

9. Гиперскоростная звезда


В отличие от всех других звёзд в этом списке, гиперскоростные звёзды в целом являются обычными звёздами, не обладающими какими-либо отличительными или интересными качествами, кроме того, что они мчатся сквозь пространство на безумных скоростях. Гиперскоростные звёзды, скорость которых достигает более 1.5-3 миллионов километров в час, появляются в результате того, что звёзды приближаются слишком близко к центру галактики - который отбрасывает звёзды на сверхвысоких скоростях. Все известные гиперскоростные звёзды в нашей галактике двигаются со скоростью, превышающей космическую более чем в два раза. Следовательно, в конечном итоге они полностью вылетят из галактики и будут дрейфовать в темноте на протяжении всей своей жизни.

8. Цефеиды


К Цефеидам или же к пульсирующим переменным звёздам, относятся звёзды, масса которых превышает массу нашего солнца в 5-20 раз. Эти звёзды регулярно увеличиваются и уменьшаются в размере, что создаёт впечатление пульсации. Цефеиды расширяются из-за неимоверно сильного давления внутри их плотных ядер, но как только они расширяются, давление спадает, и они опять съёживаются. Этот цикл расширений и съёживаний продолжается на протяжении всей их жизни, пока звезда не перестаёт существовать.

7. Чёрный карлик


Если звезда слишком мала для того, чтобы стать нейтронной или просто взорваться в суперновую, она, в конце концов, превращается в белого карлика - неимоверно плотную и тусклую звезду, которая израсходовала всё своё топливо и в ядре которой больше не идёт деление атомного ядра при цепной реакции. Зачастую, белые карлики, размер которых не превышает размер Земли, медленно остывают путём электромагнитного излучения. После очень долгого времени, белые карлики, наконец, совсем перестают излучать свет и тепло - становясь, таким образом, той звездой, которую учёные и называют чёрным карликом, и которая практически незаметна для наблюдателя. Переход в состояние чёрного карлика означает конец звёздной эволюции для многих звёзд. Считается, что на данный момент во вселенной не существует чёрных карликов, потому что для того, чтобы они образовались, требуется слишком много времени. Наше солнце дегенерирует в чёрного карлика приблизительно через 14,5 миллиардов лет.

6. Оболочечные звёзды


Когда люди думают о звёздах, они представляют себе огромные обжигающие сферы, плавающие в пространстве. На самом деле, из-за центробежной силы, большинство звёзд немного сплюснутые или плоские у полюсов. Для большинства звёзд это сплющивание достаточно незначительное, чтобы не обращать на него никакого внимания, но в звёздах некоторых пропорций, которые вращаются на дикой скорости, это сплющивание настолько сильное, что придаёт им форму мяча для регби. Из-за своих высоких вращательных скоростей, эти звёзды также отбрасывают огромные количества материи вокруг своих экваторов, создавая вокруг себя «оболочку» газа - формируя, таким образом, оболочечную звезду. На изображении выше, та белая, немного прозрачная масса, которая окружает приплюснутую звезду Ахернар (Альфа Эридана) и является «оболочкой».

5. Нейтронная звезда


Как только звезда становится суперновой, от неё обычно остаётся только нейтронная звезда. Нейтронные звёзды очень маленькие и очень плотные шары, состоящие из (как вы уже догадались) нейтронов. Во много раз плотнее, чем ядро атома, и размером меньше дюжины километров в диаметре, нейтронные звёзды действительно представляют собой замечательный продукт физики.

Из-за чрезвычайной плотности нейтронных звёзд, любой атом, который вступает в контакт с их поверхностью, практически моментально разрывается на части. Все не нейтронные субатомные частицы сначала распадаются на свои постоянные кварки, а затем «переформировываются» в нейтроны. В результате этого процесса высвобождается огромное количество энергии, которой настолько много, что в результате столкновения нейтронной звезды с астероидом среднего размера, произошёл бы взрыв гамма-излучения с высвобождением гораздо большего количества энергии, чем наше солнце смогло бы выработать за всё время своего существования. Уже только по одной этой причине, любая нейтронная звезда, находящаяся недалеко от нашей солнечной системы (на расстоянии нескольких сотен световых лет) представляет собой вполне реальную угрозу уничтожения Земли выбросом смертельной радиации.

4. Звезда тёмной энергии


Из-за многих проблем связанных с нашим текущим пониманием чёрных дыр, особенно в отношении квантовой механики, много альтернативных теорий было выдвинуто для объяснения наших наблюдений.

Одной из этих теорий является теория о звезде тёмной материи. Существует теория, что когда огромная звезда разрушается, она превращается не в чёрную дыру, а в пространственно-временную, мутирующую тёмную материю. Из-за квантовой механики, эта звезда должна обладать довольно уникальным свойством: за пределами своего горизонта событий она должна притягивать всю материю, в то время как внутри, вне своего горизонта событий, она будет отторгать всю материю. В теории это происходит потому, что тёмная материя обладает «негативной» силой тяготения, которая отталкивает всё, что приближается к ней, точно так же, как одинаковые полюса магнита отталкиваются друг от друга.

Кроме того, в соответствии с этой теорией, как только электрон проходит через горизонт событий звезды тёмной энергии, он превращается в позитрон, также известный как антиэлектрон, и отбрасывается. Когда эта античастица сталкивается с нормальным электроном, они взаимно уничтожаются, образуя при этом небольшой выброс энергии. Считается, что этот процесс, в крупном масштабе, способен объяснить огромное количество радиации, которая выбрасывается из центра галактик - именно оттуда, где по альтернативным теориям и располагаются чёрные дыры.

По большей части - легче всего представлять звезду тёмной энергии в виде чёрной дыры, которая отбрасывает материю и не обладает сингулярностью.

3. Железная звезда


Звёзды создают более тяжёлые элементы с помощью ядерного синтеза - процесса, в ходе которого более лёгкие элементы сливаются для образования более тяжёлых элементов. В результате этого процесса происходит высвобождение энергии. Чем тяжелее элемент, тем меньше энергии высвобождается при его слиянии. Типичным путём преобразования элементов для звёзд считается следующий: водород преобразуется в гелий, затем гелий в углерод, углерод в кислород, кислород в неон, неон в кремний, а затем - в конечном итоге - кремний в железо. Для синтеза железа требуется больше энергии, чем высвобождается, поэтому железо является последней ступенью в любой стабильной реакции ядерного синтеза. Большинство звёзд умирает до того, как они начинают синтезировать углероды, но те из них, которые достигают этой ступени, или следующей за ней, обычно вскоре после этого взрываются в сверхновую.

Железная звезда, которая состоит полностью из железа, но, тем не менее, продолжает парадоксальный выброс энергии. Но каким же образом? С помощью туннельного эффекта. Туннельный эффект - феномен, при котором частица преодолевает барьер, который при обычных условиях она бы не смогла преодолеть. Например: если вы кинете мячик об стену, обычно он ударится об неё и отскочит. Однако, согласно квантовой механике, существует небольшой шанс, что мяч пролетит сквозь стену и ударится о человека, стоящего позади стены.

Это пример квантового туннелирования. Конечно, вероятность такого случая бесконечно мала, но на атомном уровне такое происходит достаточно часто - особенно в таких огромных объектах, как звёзды. Обычно, для того чтоб синтезировать железо, необходимо большое количество энергии, так как в нём присутствует некоторый барьер, предотвращающий синтез - это значит, что железо поглощает больше энергии, чем отдаёт. При туннельном эффекте железо может синтезироваться без того, чтобы поглощать энергию. Для облегчения понимания представьте два небольших мячика, катящихся навстречу друг другу, а при столкновении они вдруг становятся одним целым. Обычно такое слияние потребовало бы огромную энергию, но туннелирование позволяет производить его без энергии вообще.

Синтез железа через туннельный эффект, явление очень редкое, поэтому железная звезда должна была бы обладать невероятно большой массой, чтоб в ней постоянно проходила реакция ядерного синтеза. По этой причине, и потому что железо достаточно редкий элемент во Вселенной - считается, что до появления первой железной звезды пройдёт 1 квингентиллион лет (10 в 1503 степени). 



2. Квази-Звезда


«Мерцай, мерцай, квази-звезда!
Далека ты, иль близка?
Так отлична от других,
Светом ослепляешь их.
Мерцай, мерцай, квази-звезда!
В мыслях, я с тобой всегда»

Георгий Антонович Гамов, «Квазар», 1964 год.

Гипергиганты - самые большие из звёзд, обычно превращаются в чёрные дыры, масса которых в десять раз больше массы нашего Солнца. Естественно возникает вопрос: откуда могут появляться сверхмассивные чёрные дыры в центре галактик, массой в миллиард звёзд? Ни одна обычная звезда не может быть настолько большой, чтоб породить такого монстра! Конечно, можно подумать, что чёрные дыры постепенно разрастаются, поглощая материю, но, вопреки широко распространённому мнению, это очень медленный процесс. Более того, большинство сверхмассивных чёрных дыр образовались в первые несколько миллиардов лет жизни нашей Вселенной, что не дало бы достаточного времени любой обычной чёрной дыре разрастись до тех монстров, которые можно увидеть сейчас. Согласно одной из теорий, первые звёзды третьего поколения, которые были больше нынешних гипергигантов и состоящие из гелия и водорода, быстро погибали и создавали огромные чёрные дыры, которые впоследствии соединялись в одну сверхмассивную чёрную дыру. Согласно другой, более вероятной, теории сверхмассивные чёрные дыры - «дети» квази-звёзд. В первый миллиард лет, во Вселенной передвигались огромные облака гелия и водорода. Если материя, содержащаяся в этих облаках, достаточно быстро сжималась - она могла породить большую звезду с небольшой чёрной дырой в центре - квази-звезду, яркостью в миллиард звёзд. Обычно такой сценарий бы привёл к образованию сверхновой звезды, после чего «оболочка» звезды и окружающая её материя вырвалась бы в окружающий космос. Но, если облако материи, окружающее звезду, достаточно большое и плотное, материя выдержит взрыв и начнёт поглощаться чёрной дырой. «Подкормленная» огромным объёмом материи чёрная дыра разрослась бы до огромных размеров за небольшой промежуток времени. В качестве примера: представьте, что у вас есть небольшая бомба, окруженная картоном. Если бомба взорвётся, как суперновая, картон улетит, а чёрная дыра, образовавшаяся в результате взрыва, не смогла бы поглотить материю. Но, если вместо картона будет толстый слой бетона, взрыв не смог бы сдвинуть стену, которую бы впоследствии смогла бы поглотить чёрная дыра.

1. Бозонная звезда


Во вселенной существуют два типа частиц: бозоны и фермионы. Самым простым отличием между ними является то, что фермионы являются частицами с полуцелым значением спина, в то время как бозонные частицы обладают целым значением спина. Все элементарные и составные частицы, такие как электроны, нейтроны и кварки являются фермионами, в то время как к бозонам относятся фотоны и глюоны. В отличие от фермионов, два или более бозона может находиться в одном месте.

Чтоб облегчить понимание: фермионы это здания, а бозоны это призраки. В одном месте может находиться одно здание, так как невозможно построить два здания на одном и том же месте, но тысячи призраков могут находиться в одном месте или здании, так как они нематериальны (у бозонов на самом деле есть масса, это всего-лишь пример). Количество бозонов в одном месте неограниченно. Все известные звёзды состоят из фермионов, но если существуют стабильные бозоны, обладающие некоторой массой, то гипотетически могут существовать и бозонные звёзды.

Учитывая, что гравитация зависит от массы, представьте, что может случиться, если существует такой тип частицы, что в одной точке пространства может сосуществовать бесконечное количество частиц такого типа. Вернувшись к нашему примеру - представьте, что каждый призрак обладает какой-то, даже небольшой массой, а теперь поместите миллиарды призраков в одну точку - получится точка, обладающая огромной массой, которая будет притягивать другие объекты своей огромной гравитационной силой. Таким образом, бозонные звёзды могут обладать бесконечной массой, сконцентрированной в бесконечной малой точке пространства. Согласно теориям, бозонные звёзды, если они существуют, расположены в центрах галактик.

Чёрные ка́рлики - остывшие и вследствие этого не излучающие (или слабоизлучающие) в видимом диапазоне белые карлики . Представляют собой конечную стадию эволюции белых карликов в отсутствие аккреции .

В настоящее время в астрономической литературе термин «чёрный карлик», как правило не используется, такие объекты именуются белыми карликами (WD).

Массы чёрных карликов, подобно массам белых карликов, ограничиваются сверху пределом Чандрасекара , нижний предел массы определяется скоростью эволюции звёзд главной последовательности в белые карлики и скоростью последующего остывания.

Современные модели (2006 г.) остывания белых карликов предсказывают, что белые карлики, образованные при эволюции первого поколения звёзд (возраст ≈13 миллиардов лет) должны в настоящее время иметь температуры фотосферы ≈3200 K и блеск в ≈16 абсолютных звёздных величин , то есть быть весьма тусклыми объектами и рассматриваются в качестве одних из кандидатов-компонентов скрытой массы , входящей в состав массивных компактных объектов галактических гало (MACHO) . Одним из примеров таких «остывших» объектов является белый карлик WD 0346+246 с температурой поверхности 3900 K .

Чёрные карлики, как и массивные коричневые карлики , находятся в состоянии гидростатического равновесия, поддерживаемого давлением вырожденного электронного газа их недр.

См. также

Напишите отзыв о статье "Чёрный карлик"

Примечания

Ссылки

Отрывок, характеризующий Чёрный карлик

Действительно, только открытие кампании задержало Ростова и помешало ему приехать – как он обещал – и жениться на Соне. Отрадненская осень с охотой и зима со святками и с любовью Сони открыли ему перспективу тихих дворянских радостей и спокойствия, которых он не знал прежде и которые теперь манили его к себе. «Славная жена, дети, добрая стая гончих, лихие десять – двенадцать свор борзых, хозяйство, соседи, служба по выборам! – думал он. Но теперь была кампания, и надо было оставаться в полку. А так как это надо было, то Николай Ростов, по своему характеру, был доволен и той жизнью, которую он вел в полку, и сумел сделать себе эту жизнь приятною.
Приехав из отпуска, радостно встреченный товарищами, Николай был посылал за ремонтом и из Малороссии привел отличных лошадей, которые радовали его и заслужили ему похвалы от начальства. В отсутствие его он был произведен в ротмистры, и когда полк был поставлен на военное положение с увеличенным комплектом, он опять получил свой прежний эскадрон.
Началась кампания, полк был двинут в Польшу, выдавалось двойное жалованье, прибыли новые офицеры, новые люди, лошади; и, главное, распространилось то возбужденно веселое настроение, которое сопутствует началу войны; и Ростов, сознавая свое выгодное положение в полку, весь предался удовольствиям и интересам военной службы, хотя и знал, что рано или поздно придется их покинуть.
Войска отступали от Вильны по разным сложным государственным, политическим и тактическим причинам. Каждый шаг отступления сопровождался сложной игрой интересов, умозаключений и страстей в главном штабе. Для гусар же Павлоградского полка весь этот отступательный поход, в лучшую пору лета, с достаточным продовольствием, был самым простым и веселым делом. Унывать, беспокоиться и интриговать могли в главной квартире, а в глубокой армии и не спрашивали себя, куда, зачем идут. Если жалели, что отступают, то только потому, что надо было выходить из обжитой квартиры, от хорошенькой панны. Ежели и приходило кому нибудь в голову, что дела плохи, то, как следует хорошему военному человеку, тот, кому это приходило в голову, старался быть весел и не думать об общем ходе дел, а думать о своем ближайшем деле. Сначала весело стояли подле Вильны, заводя знакомства с польскими помещиками и ожидая и отбывая смотры государя и других высших командиров. Потом пришел приказ отступить к Свенцянам и истреблять провиант, который нельзя было увезти. Свенцяны памятны были гусарам только потому, что это был пьяный лагерь, как прозвала вся армия стоянку у Свенцян, и потому, что в Свенцянах много было жалоб на войска за то, что они, воспользовавшись приказанием отбирать провиант, в числе провианта забирали и лошадей, и экипажи, и ковры у польских панов. Ростов помнил Свенцяны потому, что он в первый день вступления в это местечко сменил вахмистра и не мог справиться с перепившимися всеми людьми эскадрона, которые без его ведома увезли пять бочек старого пива. От Свенцян отступали дальше и дальше до Дриссы, и опять отступили от Дриссы, уже приближаясь к русским границам.

Чёрный карлик - это белый карлик, который остыл до температуры реликтового излучения (космического микроволнового фона), и поэтому стал невидим. В отличие от красных карликов, коричневых карликов и белых карликов, чёрные карлики - это гипотетические объекты во Вселенной.

Когда звезда эволюционировала в белого карлика, она больше не имела источника тепла и сияла всего лишь потому, что всё ещё была горячая. Как будто что-то достали из духовки. Если оставить белого карлика в покое, со временем он остынет до температуры, окружающей его среды. В отличие от сегодняшнего ужина, который остывает за счёт конвекции, теплопроводности и излучения, белый карлик охлаждается только через излучение.

Так как давление вырождения электронов останавливает его от коллапса, который приведёт к , белый карлик - это фантастический проводник тепла (физика газов Ферми объясняет проводимость как белых карликов, так и металлов!). То, как быстро остынет белый карлик легко вычислить... это зависит только от первоначальной температуры, массы и состава (большинство из них состоят из углерода и кислорода; некоторые - преимущественно из кислорода, неона и магния; другие из гелия). И как минимум часть ядра белого карлика может кристаллизоваться, кривая охлаждения будет иметь небольшую шишку в этом месте.

Не чёрный карлик... пока ещё. Белый карлик Сириус B.

Вселенной всего около 13,7 миллиарда лет, поэтому даже белый карлик, образовавшийся 13 миллиардов лет назад (что маловероятно; , которые стали белыми карликами, понадобился миллиард лет или около того), имел бы всё ещё температуру в несколько тысяч градусов. Самый холодный белый карлик, наблюдаемый на сегодняшний день, имеет температуру немногим меньше 3000 Кельвин. Его ждёт долгий путь прежде, чем он станет чёрным карликом.

Получается, ответить на вопрос, сколько времени понадобится белому карлику, чтобы остыть до температуры реликтового излучения, довольно сложно. Почему? Потому что есть много интересных эффектов, которые могут быть важны, последствия их учёные ещё не моделировали. Например, белый карлик будет содержать немного , и какая-то часть её может распадаться через интервалы времени в квадриллионы лет, генерируя тепло. Вещество тоже не вечно, протоны тоже могут распадаться, генерируя тепло. И реликтовое излучение становится холоднее со временем, поскольку .

В любом случае, если мы говорим, условно, что белый карлик, имеющий температуру 5 Кельвин, становится чёрным карликом, тогда ему потребуется, по меньшей мере, 10 15 лет на то, чтобы стать чёрным карликом.

Ещё кое-что, не бывает белых карликов-одиночек; у одних есть компаньоны, образуя вместе , например, другие могут блуждать в газопылевом облаке... падающая масса тоже генерирует тепло, и если на поверхности накапливается достаточное количество водорода, то эта звезда может разорваться как водородная бомба (это называется ), немного разогревая белого карлика.

Название прочитанной вами статьи "Звезда чёрный карлик" .

Во Вселенной существует множество различных звезд. Большие и маленькие, горячие и холодные, заряженные и не заряженные. В этой статье мы назовем основные виды звезд, а также дадим подробную характеристику Жёлтым и Белым карликам.

  1. Жёлтый карлик . Жёлтый карлик – тип небольших звёзд главной последовательности, имеющих массу от 0,8 до 1,2 массы Солнца и температуру поверхности 5000–6000 K. Подробнее об этом типе звезд нем смотрите ниже.
  2. Красный гигант . Красный гигант – это крупная звезда красноватого или оранжевого цвета. Образование таких звезд возможно как на стадии звездообразования, так и на поздних стадиях их существования. Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе из созвездия Орион – самый яркий пример красного супергиганта.
  3. Белый карлик . Белый карлик – это то, что остаётся от обычной звезды с массой, не превышающей 1,4 солнечной массы, после того, как она проходит стадию красного гиганта. Подробнее об этом типе звезд нем смотрите ниже.
  4. Красный карлик . Красные карлики – самые распространённые объекты звёздного типа во Вселенной. Оценка их численности варьируется в диапазоне от 70 до 90% от числа всех звёзд в галактике. Они довольно сильно отличаются от других звезд.
  5. Коричневый карлик . Коричневый карлик – субзвездные объекты (с массами в диапазоне примерно от 0,01 до 0,08 массы Солнца, или, соответственно, от 12,57 до 80,35 массы Юпитера и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.
  6. Субкоричневые карлики . Субкоричневые карлики или коричневые субкарлики – холодные формирования, по массе лежащие ниже предела коричневых карликов. Масса их меньше примерно одной сотой массы Солнца или, соответственно, 12,57 массы Юпитера, нижний предел не определён. Их в большей мере принято считать планетами, хотя к окончательному заключению о том, что считать планетой, а что – субкоричневым карликом научное сообщество пока не пришло.
  7. Черный карлик . Черные карлики – остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.
  8. Двойная звезда . Двойная звезда – это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс.
  9. Новая звезда . Звезды, светимость которых внезапно увеличивается в 10 000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызывая вспышку светимости.
  10. Сверхновая звезда . Сверхновая звезда – это звезда, заканчивающая свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.
  11. Нейтронная звезда . Нейтронные звезды (НЗ) – это звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, порядка 10-20 км в диаметре. Они состоят в основном из нейтральных субатомных частиц – нейтронов, плотно сжатых гравитационными силами. В нашей Галактике, по оценкам ученых, могут существовать от 100 млн до 1 млрд нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд.
  12. Пульсары . Пульсары – космические источники электромагнитных излучений, приходящих на Землю в виде периодических всплесков (импульсов). Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения. Когда Земля попадает в конус, образуемый этим излучением, то можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Некоторые нейтронные звёзды совершают до 600 оборотов в секунду.
  13. Цефеиды . Цефеиды – класс пульсирующих переменных звёзд с довольно точной зависимостью период-светимость, названный в честь звезды Дельта Цефея. Одной из наиболее известных цефеид является Полярная звезда. Приведенный перечень основных видов (типов) звезд с их краткой характеристикой, разумеется, не исчерпывает всего возможного многообразия звезд во Вселенной.

Жёлтый карлик

Находясь на различных стадиях своего эволюционного развития, звезды подразделяются на нормальные звезды, звезды карлики, звезды гиганты. Нормальные звезды, это и есть звезды главной последовательности. К таким, например, относится наше Солнце. Иногда такие нормальные звезды называются желтыми карликами .

Характеристика

Сегодня мы кратко расскажем о желтых карликах, которых еще называют желтыми звездами. Желтые карлики – это, как правило, звезды средней массы, светимости и температуры поверхности. Они являются звездами основной последовательности, располагаясь примерно в середине на диаграмме Герцшпрунга – Рассела и следуя за более холодными и менее массивными красными карликами.

По спектральной классификации Моргана-Кинана желтые карлики соответствуют в основном классу светимости G, однако в переходных вариациях соответствуют иногда классу К (оранжевые карлики) или классу F в случае с желто-белыми карликами.

Масса желтых карликов лежит зачастую в пределах от 0,8 до 1,2 массы Солнца. При этом температура их поверхности составляет в своем большинстве от 5 до 6 тысяч градусов по Кельвину.

Наиболее ярким и известным нам представителем из числа желтых карликов является наше Солнце.

Кроме Солнца, среди ближайших к Земле желтых карликов стоит отметить:

  1. Две компоненты в тройной системе Альфа Центавра, среди которых Альфа Центавра А по спектру светимости аналогично Солнцу, а Альфа Центавра В – типичный оранжевый карлик класса К. Расстояние до обеих компонент составляет чуть более 4-х световых лет.
  2. Оранжевый карлик – звезда Ран, она же Эпсилон Эридана, с классом светимости К. Расстояние до Рана астрономы оценили примерно в 10 с половиной световых лет.
  3. Двойная звезда 61 Лебедя, удаленная от Земли на чуть более 11 световых лет. Обе компоненты 61 Лебедя типичные оранжевые карлики класса светимости К.
  4. Солнцеподобная звезда Тау Кита, удаленная от Земли примерно на 12 световых лет, со спектром светимости G и интересной планетной системой, состоящей минимум из 5 экзопланет.

Образование

Эволюция желтых карликов весьма интересна. Продолжительность жизни желтого карлика составляет примерно 10 миллиардов лет.

Как и большинства звезд в их недрах протекают интенсивные термоядерные реакции, в которых в основном водород перегорает в гелий. После начала реакций с участием гелия в ядре звезды водородные реакции перемещаются все больше к поверхности. Это и становится отправной точкой в преобразовании желтого карлика в красный гигант. Результатом подобного преобразования может служить красный гигант Альдебаран.

С течением времени поверхность звезды будет постепенно остывать, а внешние слои начнут расширяться. На конечных стадиях эволюции красный гигант сбрасывает свою оболочку, которая образует планетарную туманность, а его ядро превратится в белый карлик, который далее будет сжиматься и остывать.

Подобное будущее ждет и наше Солнце, которое сейчас находится на средней стадии своего развития. Примерно через 4 миллиарда лет оно начнет свое превращение в красный гигант, фотосфера которого при расширении может поглотить не только Землю и Марс, но даже и Юпитер.

Время жизни жёлтого карлика составляет в среднем 10 миллиардов лет. После того, как сгорает весь запас водорода, звезда во много раз увеличивается в размере и превращается в красный гигант. самым планетарные туманности, а ядро коллапсирует в маленький, плотный белый карлик.

Белые карлики

Белые карлики – звезды, имеющие большую массу (порядка солнечной) и малый радиус (радиус Земли), что менее предела Чандрасекара для выбранной массы, являющиеся продуктом эволюции красных гигантов. Процесс производства термоядерной энергии в них прекращен, что приводит к особым свойствам этих звезд. Согласно различным оценкам, в нашей Галактике их количество составляет от 3 до 10 % всего звездного населения.

История открытия

В 1844 году немецкий астроном и математик Фридрих Бессель при наблюдении Сириуса обнаружил небольшое отклонение звезды от прямолинейного движения, и сделал предположение о наличии у Сириуса невидимой массивной звезды-спутника.

Его предположение было подтверждено уже в 1862 году, когда американский астроном и телескопостроитель Альван Грэхэм Кларк, занимаясь юстировкой самого крупного в то время рефрактора, обнаружил возле Сириуса неяркую звезду, которую впоследствии окрестили Сириус Б.

Белый карлик Сириус Б имеет низкую светимость, а гравитационное поле воздействует на своего яркого компаньона довольно заметно, что свидетельствует о том, что у этой звезды крайне малый радиус при значительной массе. Так впервые был открыт вид объектов, названный белыми карликами. Вторым подобным объектом была звезда Маанена, находящаяся в созвездии Рыб.

Как же образуются белые карлики?

После того как в стареющей звезде выгорит весь водород, ее ядро сжимается и разогревается, – это способствует расширению ее внешних слоев. Эффективная температура звезды падает, и она превращается в красного гиганта. Разреженная оболочка звезды, очень слабо связанная с ядром, со временем рассеивается в пространстве, перетекая на соседние планеты, а на месте красного гиганта остается очень компактная звезда, называемая белым карликом.

Долгое время оставалось загадкой, почему белые карлики, имеющие температуру, превосходящую температуру Солнца, по сравнению с размерами Солнца невелики, пока не выяснилось, что плотность вещества внутри них предельно высока (в пределах 10 5 – 10 9 г/см 3). Стандартной зависимости – масса-светимость – для белых карликов не существует, что отличает их от других звезд. В чрезвычайно малом объеме «упаковано» огромное количество вещества, из-за чего плотность белого карлика почти в 100 раз больше плотности воды.

Температура белых карликов остается практически постоянной, несмотря на отсутствие внутри них термоядерных реакций. Чем же это объясняется? По причине сильного сжатия электронные оболочки атомов начинают проникать друг в друга. Это продолжается до тех пор, пока между ядрами расстояние не становится минимальным, равным радиусу наименьшей электронной оболочки.

В результате ионизации электроны начинают свободно двигаться относительно ядер, а вещество внутри белого карлика приобретает физические свойства, которые характерны для металлов. В подобном веществе энергия к поверхности звезды переносится электронами, скорость которых по мере сжатия все больше увеличивается: некоторые из них двигаются со скоростью, соответствующей температуре в миллион градусов. Температура на поверхности и внутри белого карлика может резко отличаться, что не приводит к изменению диаметра звезды. Здесь можно привести сравнение с пушечным ядром – остывая, оно не уменьшается в объеме.

Угасает белый карлик крайне медленно: за сотни миллионов лет интенсивность излучения падает всего на 1%. Но в итоге он должен будет исчезнуть, превратившись в черного карлика, для чего могут потребоваться триллионы лет. Белые карлики вполне можно назвать уникальными объектами Вселенной. Воспроизвести в земных лабораториях условия, в которых они существуют, еще никому не удалось.

Рентгеновское излучение белых карликов

Температура поверхности молодых белых карликов, изотропных ядер звёзд после сброса оболочек, очень высока – более 2·10 5 К, однако достаточно быстро падает за счёт излучения с поверхности. Такие очень молодые белые карлики наблюдаются в рентгеновском диапазоне (например, наблюдения белого карлика HZ 43 спутником ROSAT). В рентгеновском диапазоне светимость белых карликов превышает светимость звёзд главной последовательности: иллюстрацией могут служить снимки Сириуса, сделанные рентгеновским телескопом «Чандра» – на них белый карлик Сириус Б выглядит ярче, чем Сириус А спектрального класса A1, который в оптическом диапазоне в ~10 000 раз ярче Сириуса Б.

Температура поверхности наиболее горячих белых карликов – 7·10 4 К, наиболее холодных – меньше 4·10 3 К.

Особенностью излучения белых карликов в рентгеновском диапазоне является тот факт, что основным источником рентгеновского излучения для них является фотосфера, что резко отличает их от «нормальных» звёзд: у последних в рентгене излучает корона, разогретая до нескольких миллионов кельвинов, а температура фотосферы слишком низка для испускания рентгеновского излучения.

В отсутствие аккреции источником светимости белых карликов является запас тепловой энергии ионов в их недрах, поэтому их светимость зависит от возраста. Количественную теорию остывания белых карликов построил в конце 1940-х годов профессор Самуил Каплан.